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ABSTRACT
Due to the huge and still rapidly growing number of mobile
applications (apps), it becomes necessary to provide users
an app recommendation service. Different from conventional
item recommendation where the user interest is the primary
factor, app recommendation also needs to consider factors
that invoke a user to replace an old app (if she already has
one) with a new app. In this work we propose an Actual-
Tempting model that captures such factors in the decision
process of mobile app adoption. The model assumes that
each owned app has an actual satisfactory value and a new
app under consideration has a tempting value. The former
stands for the real satisfactory value the owned app brings to
the user while the latter represents the estimated value the
new app may seemingly have. We argue that the process of
app adoption therefore is a contest between the owned apps’
actual values and the candidate app’s tempting value. Via
the extensive experiments we show that the AT model per-
forms significantly better than the conventional recommen-
dation techniques such as collaborative filtering and content
based recommendation. Furthermore, the best recommen-
dation performance is achieved when the AT model is com-
bined with them.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Smartphone Apps, App recommendation, Contest

1. INTRODUCTION
The popularity of smart phones accelerates the growth of

mobile applications, or apps for short. As Apple reported,
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there have been over 500,000 apps available in iPhone’s app
store1. Moreover, there have been 25 million app downloads
by March, 2012 [12]. With so many apps providing different
functions (e.g., games, utility, books, etc.), it is difficult for
users to find right apps they are looking for via keywords
search [36]. Therefore, there is an urgent need to provide an
effective app recommendation service.

Recommendation services have been deployed for many
types of items such as books [18], music [7], movies [15] and
even point-of-interests [38, 39]. Compared with those items,
mobile apps have a unique characteristics, i.e., a downloaded
app may affect the adoption of alternative apps. Most con-
ventional items (e.g., books, movies, locations) are for one-
shot consumption. For these products, users are typically
ready or even glad to receive more new and similar items
when they finish “consuming” old ones (e.g., reading books,
watching movies, vising locations). Mobile apps are differ-
ent. Once an app is downloaded, it serves the user contin-
uously, thus referred to as continuous consumption, which
may affect the user’s decision of downloading some alter-
native apps2. For example, if a user has owned a weather
forecast app, she is less likely to download another one that
provides exactly the same function. Therefore, an app rec-
ommendation service may want to avoid such a recommen-
dation.

While avoiding recommendation of similar items for con-
tinuous assumption may sound intuitive, via an analysis of
user downloading log, we observed that some users did down-
load multiple similar apps (weather forecast, for example)3.
Before detailing this we first consider a common process of
app downloading. Usually a user enters an app store, which
would provide her a list of apps, as shown in Figure 1a.
Among those candidate apps, the user may pick one and tap
the screen to view its detailed information, e.g., description,
screenshots, reviews, etc., as shown in Figure 1b. If the user
decides to download the app, she may click “install”. If not,
she may simply return to the app list. We summarize the
process as pick-and-take, where “pick” represents the user’s
behavior of viewing the details of an app and “take” means
the user downloads the app.

We argue that picking some app from a pool to view is af-
fected by the users’ interests since users can see the app titles
while browsing the app list. On the other hand the decision

1http://www.apple.com/iphone/apps-for-iphone/
2We are aware that some apps are equal to electronic books
and belong to one-shot consumption. However, most of them
are to provide some utility which can continuously serve the
user.
3Please refer to Section 5 for detailed description of the data.
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to download the app is influenced by the contest between
the already-owned apps and the candidate one. Specifically,
people download apps to satisfy their needs. Thus, the apps’
“satisfactory value”, or marginal utility [33] is an important
factor. However, such value remains unknown until the app
is installed and used by the user. What prompting the user
to download an app is its seeming attractiveness. There-
fore, in this work we introduce the notions of actual value
and tempting value to denote the assessment of satisfactory
and attractiveness in mobile apps. The former refers to the
real satisfactory value of the app after it is used and the lat-
ter stands for the estimated satisfactory value that the app
seems to bring. Whether to download some app or not is
thus a result of the contest between the owned apps’ actual
values and the candidate’s tempting value.

(a) App list. (b) App’s detailed information
page.

Figure 1: Screenshots of app store

Specifically, consider two apps, one owned by the user
while the other is the candidate. There are basically two
possible contest results between them. Firstly, if the candi-
date’s tempting value is larger than the other’s actual value,
the user is more likely to download the new app. On the
other hand, if the tempting value is smaller than the actual
value, the user would probably not install the new app. For
example, suppose the user has installed an app for weather
forecast and now there is a new one available in the app
store. If the app looks better than the owned one (e.g.,
more fancy screenshots), the user may probably download
it. If the app does not seem to provide some attractive new
features or powerful functions (i.e., the tempting value is no
larger than the actual value), the user may not consider to
install it.

In summary the process of an app download, as men-
tioned above, consists of two stages, namely pick to view
and then download it. User interests and the contest be-
tween satisfaction and temptation are in play respectively in
these two stages. Conventional recommendation techniques,
which do not consider the latter one, may fail to provide suc-
cessful recommendation when directly applied. We use ex-
amples in Figure 2 to illustrate scenarios where user-based
collaborative filtering (UCF), item-based collaborative fil-
tering (ICF) and content-based recommendation (CBR) fail
to make good recommendation, respectively. UCF finds a
set of users similar to the target user and recommends items
accessed by those similar users to the target user. In Fig-
ure 2a, two users have shared a few apps, represented as App

Group. UCF will thus treat them as similar users and recom-
mend App1 to u2 and App2 to u1. However, if App1’s actual
value is larger than App2’s tempting value, u1 will reject the
recommended App2. Also, recommendation to u2 will fail if
the App2 has an actual value larger than App1’s tempting
value. Similarly for ICF and CBR, failing to incorporate the
app contest results in ineffective recommendation.

As shown above, the phenomenon of app contest is an
important factor in app adoption and thus should be incor-
porated in app recommendation. In this work, we aim to
model such phenomenon by mining the actual value (AV)
and tempting value (TV) of each app. Generally they can
be learned via the users’ view/download sequences. With
no loss of generality, consider two apps appi and appj, of
which appi is owned by the user and appj is being viewed.
There are two possible results, i.e., i) the user downloads
appj, and ii) the user does not download appj . Let nij de-
note the number of people falling in case i) while mij denote
the number of people in case ii). Intuitively, large nij and
small mij indicate appi’s AV is larger than appj’s TV. Sim-
ilarly, small nij and large mij suggest that the appi’s AV
is smaller than appj’s TV. The details regarding learning
model parameters are discussed in Section 3.2.

Usually, a user has owned several apps when she is view-
ing a candidate app. Intuitively not all of them may affect
the user’s decision. For example, a game app is unlikely
to be selected for comparison when the user is considering
whether to download a weather forecast app. Here we in-
troduce a new metric function overlap, ranging from 0 to 1
to measure the similarity between two apps. The function
overlap is 1 when two apps offer exactly the same function,
e.g., weather forecast. On the other hand, function overlap
is 0 if two apps are totally different, e.g., a game app and
a weather forecast app. Generally, a larger function overlap
between two apps suggests a higher probability of contest
between them. In this work, while our focus is not on quan-
tifying function overlap, we provide a reasonable measure
based on each app’s description. The details are provided in
Section 2.2.

In summary, our contributions are four-folds:
• We reveal two item access patterns, i.e., one-shot con-

sumption and continuous consumption. Also we point out
a decision in app download is affected by two factors, i.e.,
user interest and app contest.

• We analyze why the state-of-the-art recommendation
techniques, i.e., UCF, ICF and CBR, may fail in recom-
mending apps due to app contest.

• We propose an Actual-Tempting model to capture the
contest between apps and integrate it into app recommen-
dation.

• We conduct extensive experiments to evaluate our AT
model as well as collaborative filtering and content-based
recommendation. The result shows that performance of con-
ventional recommendation techniques is improved by incor-
porating the AT model.

The rest of the paper is organized as follows. Section 2
formulates the app recommendation problem and introduces
the solution framework. It also briefly describes the quan-
tification of function overlap. Section 3 provides details of
our AT model. Section 4 gives a discussion on the AV and
TV of each app. Section 5 evaluates the model as well as the
baseline. Section 6 gives a literature review of related work.
Finally Section 7 concludes the whole paper and briefly dis-
cusses our future work.
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App 1 App 2

(a) User-based Collaborative Filtering

App 1 App 2

(b) Item-based Collaborative Filtering

App 1 App 2 App 3

(c) Content-based Recommendation

Figure 2: Three scenarios of failed recommendation. The solid arrow means the user downloads the app while the dashed
arrow indicates the particular app is recommended to the user.

2. PRELIMINARIES
In this section we first formulate the app recommendation

as a ranking problem. Then, we provide a simple method to
measure the function overlap between two apps. Finally, we
propose a ranking framework, which consists of two parts,
i) user-interest ranking, and ii) app-contest ranking.

2.1 Problem Formulation
Generally, to recommend apps to a target user, the sys-

tem selects a number, say k, apps from a pool of candidate
apps and sort them based on the probability that the target
user may download them. Formally let ut denote the target
user to whom the recommendation would be delivered, and
S = {app1, · · · , appn} denote the list of candidates among
which appj is the jth app in the list. The top-k app rec-
ommendation is to select k apps that are most likely to be
downloaded by the target user ut. The formal definition is
shown in Definition 1.

Definition 1 (Top-k App Recommendation). Given
a list of candidate apps S, the top-k recommendation is to
form a subset S′ s.t. ∀appj1 ∈ S′, appj2 ∈ S ∧ appj2 �∈ S′,
the user ut is more likely to download appj1 than appj2 .

2.2 Computation of Function Overlap
As mentioned in Section 1, the precondition that the user

would make comparison of two apps is that these two apps
should provide similar functions, or exactly, how much one
app’s function overlaps with the other’s. While our focus
is on the app contest, we only provide a feasible method
to compute the function overlap. Formally, let wij ∈ [0, 1]
denote the function overlap between appi and appj, where
small values indicate tiny function overlap and vice versa.

Supposedly an app’s function is reflected in its descrip-
tion. Thus we use such information to indirectly quantify
the function overlap. Specifically, we treat it as a document
and use LDA [4] to learn the latent topic distribution for
it. As such, each app is represented as a vector showing
its distribution over the discovered latent topics. Then the
function overlap of two apps is computed as the cosine simi-
larity of their vectors. Let f denote the topic distribution of
the app, the computation of function overlap between appi
and appj is shown in Equation (1).

wij =
fi · fj

||fi|| × ||fj || (1)

where (·) represents the vector dot multiplication.

2.3 Ranking Framework
As described earlier the user behaviors in the mobile app

market can be summarized as a pick-and-take process. First,
when a user browses the app list she can see the titles and lo-
gos of the apps and thus know their basic functions. Thus,
which apps are selected to view is mainly decided by the
user’s interests. Then, after she view the details of an app
the contest between satisfaction and temptation plays a ma-
jor role to decide to download it or not.

Therefore, in the scenario of app recommendation, there
are two aspects to consider, user’s interest and the app con-
test. The former suggests what kind of apps may attract
the user while the latter considers the contest between the
new app and old ones the user has already installed. There-
fore, the ranking consists of two parts, user-interest ranking
and app-contest ranking, which are linearly combined. For-
mally, the ranking score of an app appi for the target user
ut is defined in Equation (2).

Rank(ut, appi) = αUIR(ut, appi) + (1− α)ACR(ut, appi) (2)

where α ∈ [0, 1] is a balancing parameter.
The first part UIR(·) measures how interesting the candi-

date app is, which can be implemented by any conventional
recommendation technique. The second part ACR(·) consider
the app contest and thus is the focus of this study.

3. ACTUAL-TEMPTING MODEL
In this section we describe the details of our AT model.

We first introduce the general idea of the actual value and
tempting value of each app as well as how they affect the
user’s app-downloading behaviors. Then we discuss how to
learn such latent values for each app via users’ action se-
quence. Finally we give the ranking function of AT model.

3.1 Model of Actual and Tempting Value
We assume that each app has two user-independent latent

parameters, referred to as actual value (AV) and tempting
value (TV). The first one stands for the real satisfaction the
app brings to the user while the second one is the estimated
satisfaction the app may provide. The AV only exists after
the user downloads and uses the app while the TV is ob-
tained when the user views the app and evaluates whether
it is worth downloading. Generally speaking, a large TV
suggests that the app looks quite attractive and is therefore
likely to motivate the user to download it.

Different apps may have functional overlap with each other,
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Table 1: List of Symbols

u The index over users
i, j The index over apps
appi The ith mobile app
ai The actual value of appi
ti The tempting value of appi
vij The contest result of appi and appj
ruj The user u’s action (download or not) to appj
Au,j The collection of apps owned by u when viewing

appj
nij The number of users who owned appi and later

download appj
mij The number of users who owned appi and later

does not download appj

which becomes a factor the user may consider when decid-
ing whether to download an app or not. For example, if the
user already owns an app for weather forecast, then it is not
very likely for her to download another one of the same func-
tion. However, a close check on the real data reveals that
some users did download multiple apps of the same func-
tion, which can be naturally explained using the notion of
AV-TV. Suppose there are two apps appi and appj serving
the same function (e.g., weather forecast), the user already
downloads appi and is viewing the information of appj. We
argue that the process of decision-making involves the con-
test between the value of these two apps, or exactly, the AV
of appi and the TV of appj . Specifically, if the appi’s AV is
larger than the appj’s TV, the user may not download the
appi. On the other hand, if the appi’s AV is smaller than
the appj’s TV, the user may be tempted to download the
appj since it is likely to bring her better user experience.

Formally, let a and t respectively denote the AV and TV
of an app, pij stands for the probability that the user u
owns appi but downloads appj later. We assume that the
pij satisfies a Beta distribution whose parameters are appi’s
ai and AV and appj’s TV tj , as shown in Equation (3).

P (pij |ai, tj) = Be(pij ; tj , ai) =
Γ(ai + tj)

Γ(ai)Γ(tj)
(pij)

tj−1(1−pij)
ai−1

(3)
where Γ(x) = (x− 1)! is a Gamma function.

Figure 3 shows the probability density function of pij for
different combinations of (ai, tj). As is easily seen, for small
ai and large tj , the generated probability pij is close to 1,
indicating a high probability for the user to download appj .
On the other hand, if the ai is large and tj is small, the
generated pij tends to be small, leading to a low probability
of downloading appj.

To model the app contest, we take two steps. Firstly, we
give the probability of contest between two apps. Then we
extend it to a general case, where contest occurs between
one and a group of apps.

Contest between two apps.
Let vij ∈ {−1, 1} denote the contest result between appi

and appj, where -1 means the user does not download appj
(which loses the contest) and 1 means appj is downloaded
(wins the contest). Given two apps appi and appj, the vij
satisfies a Bernoulli process whose parameter p is generated
by a Beta distribution. Specifically the probability of vij is
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Figure 3: Probability density function of pij for different
combination of (ai, tj).

shown in Equation (4).

P (vij |ai, tj) =

∫ 1

0

(
vijpij +

1− vij
2

)
Be(pij ; tj , ai)dpij

= vij

∫ 1

0

pijBe(pij ; tj , ai)dpij +
1− vij

2

=
tj

tj + ai
· vij + 1− vij

2
= − ai

tj + ai
· vij + 1 + vij

2
(4)

Contest between one and a group of apps.
Now we extend Equation (4) to a more general case. We

assume that there exists a quantification method to com-
pute the function overlap between any two apps. For two
apps appi and appj , let wij ∈ [0, 1] represent their func-
tion overlap. Suppose the user u now is viewing appj and
is considering whether to download it. At this time point,
let Au,j denote the collection of apps u has already owned.
Intuitively, the user would choose similar apps as reference
to decide whether to download a new app. It is highly possi-
ble that she has installed multiple similar apps but we have
no way to know which one affects her final decision. Thus
we assume that for app contest, every owned app is likely
to affect the final decision and the probability of choosing
appi for comparison is positively proportional to its function
overlap with appj.The probability of ruj ∈ {1,−1} can thus
be written as in Equation (5).

P (ruj |Au,j , tj) =
∏

appi∈Au,j

P (vij = ruj |ai, tj)
τu,i,j (5)

where τu,i,j ∈ {1, 0} is a binary value indicating whether
the appi is selected by the user u for comparison when she
is viewing appj and P (τu,i,j = 1) ∝ wij .

3.2 Model Learning
Here we describe the details of learning parameters for

each app’s AV and TV. The observed data is a series of
logs sorted by the time stamp. Each log has such format
as (u, appj, Au,j , ruj), where u is the unique user id, appj is
the app the user is viewing, Au,j is the collection of apps
already owned by the user and ruj is the final action the
user takes. When ruj = −1, the user does not download
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appj and ru,j = 1 means the user downloads the app. Let A
and T denote the AV and TV for apps appearing in the data
D. The learning process is to find proper values for A and
T such that the log-likelihood of observing D is maximized
as shown in Equation (6).

logP (D|A,T ) =
∑
u

∑
j

Iuj logP (ruj |Au,j , tj)

=
∑
u

∑
j

Iuj
∑

appi∈Au
j

τu,i,j logP (vij |ai, tj)
(6)

where Iuj is binary indicator where 1 means the user u has
viewed (and even downloaded) appj.

Since we do not really know which apps are selected for
comparison when she views appj, τu,i,j is unknown. Here we
adopt the idea of Expectation-Maximization where the ex-
pected value of τu,i,j is computed and then the log-likelihood
is maximized.

Eτ (logP (D|A,T )) =
∑
u,j

Iuj
∑

appi∈Au
j

E(τu,i,j) logP (vij |ai, tj)

∝
∑
u

∑
j

Iuj
∑

appi∈Au
j

wij logP (vij |ai, tj) =DEF L(A,T )

(7)

We further transform Equation (7) by introducing two
new values, nij and mij . The former one counts the number
of people who own appi and later download appj while the
latter one is the number of people who own appi but do not
download appj after viewing it. Mathematically, these two
values are defined in Equation (8).

nij =
∑
u

Iuj · 1 + ruj
2

· 1appi∈Au,j

mij =
∑
u

Iuj · 1− ruj
2

· 1appi∈Au,j

(8)

These two values can help remove the u from the objective
function. Semantically, each log can be interpreted as one or
multiple logs describing the contest between two apps. For
example, given a log (u, appj , A

u
j , v

u
j ), we can unfold it to

such set of data S = {(appi, appj, wij · vij |appi ∈ Au
j )}. The

learning is to find proper values for A and T such that the
probability of these unfolded data is maximized. Now the
objective function L(A,T ) can be written as Equation (9).

L(A,T ) =
∑
j

∑
u

Iuj
∑

appi∈Au
j

wij logP (vij |ai, tj)

=
∑
i

∑
j �=i

wij(nij logP (1|tj , ai) +mij logP (−1|tj , ai))

=
∑
i

∑
j �=i

wij

(
nij log

tj
tj + ai

+mij log
ai

ai + tj

)

(9)

The parameters can be learned via gradient descent with
the partial differentiation to each ai and tj , shown as in
Equation (10).

∂L

∂ai
=

∑
j �=i

wij

(
mij

ai
− nij +mij

ai + tj

)

∂L

∂tj
=

∑
i�=j

wij

(
nij

tj
− mij + nij

tj + ai

) (10)

3.3 AT Ranking
With the learned actual value and tempting value for each

app, recommendation can be made considering the possible
contest result between new app and those owned by the
user. As mentioned above, when the user is viewing an app,
each of her owned apps is likely to affect the decision and
the probability of influence is proportional to the function
overlap between these two apps. The ranking score given by
the AT model is the expected value of action ruj where 1
for download and -1 for not.

Given two apps appi and appj, of which appi is owned by
the user and appj is the one under review. With Equation
(4) giving the probability, the expected value of vij can be
computed in Equation (11).

E(vij |ai, tj) = 1 · tj
ai + tj

+ (−1) · ai

ai + tj
=

tj − ai

ai + tj
(11)

Given a set of apps Au,j owned by the target user ut, the
ranking score for appj is the expected value for ruj .

AT(ut, appj) = E(ruj |Aut,j , tj)

∝
∑

appi∈Aut,j

wijE(vij |ai, tj) =
∑

appi∈Aut,j

wij · tj − ai

ai + tj

(12)

4. ANALYSIS AND DISCUSSION
We use a data set containing 5,661 apps and 3,308 users’

view-download record to learn our AT model. Details of the
data set are described later in Section 5. Then we analyze
the learned actual and tempting value for these apps. Gen-
erally, we aim to explore the following two apsects, i) the
indication of actual and tempting values, ii) the hint of the
difference between actual and tempting values.

4.1 The Indication of Actual and Tempting Val-
ues

The core idea of the AT model is that each app has two la-
tent values, actual value and tempting value. The former is
the real value the app may bring to the user once she down-
loads and uses it. The latter is the value estimated by the
user when viewing it. In other words, the actual value re-
flects the real satisfaction of an app while the tempting value
suggests the expectation of the app to the user. To demon-
strate such claims, we crawled these apps’ ratings from the
app store and compare them with the apps’ actual values.
Also, we scanned the original records and computed for each
app its number of downloads with regarding to the total
number of viewing. Results are shown in Figure 4.

5 10 15 20 25
3.4

3.6

3.8

4

4.2

4.4

Actual Value

A
ve

ra
ge

 R
at

in
g

(a) Meaning of app’s actual
value

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tempting Value

D
ow

nl
oa

d 
P

ro
ba

bi
lit

y

(b) Meaning of app’s tempting
value

Figure 4: Meaning of app’s actual and tempting value

Figure 4a displays the relationship between actual value
and app rating in the app store. Among all apps, we firstly
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find a minimum as well as maximum actual value. Next we
equally divide this range into 9 groups and assign each app
a group according to its learned actual value. Then for each
group, we calculate the average ratings of apps. It can be
seen that the two have a positive correlation where larger
actual value suggests a higher rating. Since the app’s rating
in app store reflects the app’s quality in some way, we show
that the actual value of our AT model captures the app’s
quality to some degree.

Figure 4b displays the relationship between tempting value
and app’s download probability. Similar to the above steps,
we group the apps into 14 bins based on their learned tempt-
ing values. Then for each group, we calculate the aver-
age proportion of download numbers over view numbers,
referred to as download probability. It can be easily seen
that with the growth of tempting value, the download prob-
ability is also increasing. Given that the user has no idea of
the app’s real quality before downloading it, the tempting
value thus suggests the degree of attraction the app looks.

4.2 The Hint of Actual-Tempting Difference
After a careful check on the learned model, we note that

there exists apps whose actual value and tempting value are
not equal, and the difference may vary from app to app.
Thus we are curious about the hint behind such difference.
In Apple’s app store, each app is assigned a category. Ac-
cordingly, we group apps and for each category calculate
the average difference between its actual value and tempt-
ing value. The results are shown in Figure 5.
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Figure 5: Actual-tempting difference with regarding to app
category. Note that negative value means the app’s actual
value is smaller than its tempting value and vice versa.

Note that for apps in the same category, negative actual-
tempting difference may lead to a continuous downloading
of similar apps. The most straightforward example is the
category Books. In app store, apps of this category are
usually some electric books or comics, e.g., G. A. Henty
Books4, Pocket God Comics5 etc. These apps are similar to
conventional items (e.g., real books) where the consumption
is one-shot, i.e., users are ready to receive new items once
finishing old ones.

Another interesting app category is those whose actual
value and tempting value are quite close. Similar actual
and tempting value means the app’s real value is easy to
estimate and one knows what to expect before download-
ing. The representative example is the category Reference.

4http://itunes.apple.com/app/id397900901
5http://itunes.apple.com/app/id380752345

Apps in this category usually provide guidance or instruc-
tions, e.g., MW3 Facts and Guide6, Encyclopedia of Guns7.
Users clearly know these apps’ function before downloading.
Therefore the difference between actual and tempting values
is nearly zero.

Finally some apps have higher actual values than tempt-
ing values. Apps falling in this type are more likely to block
users from downloading other similar apps since on average
their actual values are larger than tempting values. In re-
ality, these apps usually have strong function overlap and
downloading similar ones is unnecessary. For example, one
is less likely to download two radio players in Music cate-
gory. Also, in Social Networking (SN), once a user is using
one (e.g., Facebook), she is unwilling to switch to another
(e.g., Google+).

5. EVALUATION
In this section we conduct extensive experiments to demon-

strate the effectiveness of our AT model as well as other
recommendation techniques. We also evaluate the perfor-
mance of hybrid recommendation that integrates AT model
into collaborative filtering and the content-based recommen-
dation techniques, respectively.

5.1 Data Preprocess
We used the data logged from an iPhone app, namely,

Limited-time Free8, which collects information of iPhone
apps that become available for free for a limited time in
the Apple App Store. When a user runs the app, she is
given a list of apps that are free for a limited time, as shown
in Figure 6a. When the user clicks an app from the list,
the detailed description as well as its running screenshots
are displayed (Figure 6b). When the user decides to down-
load the app, she clicks the “Get” button, which leads her
to the app store. Also, if she does not want to download
the app, the user can return to the app list by clicking the
“Back” button. Compared with the official Apple App Store
as shown in Figure 1, the user interface of this software is
very much similar and thus we can safely claim that users fol-
low the same pick-and-take pattern when downloading apps
via this one. The system records these two types of actions
for each user, i.e., the user’s picking some particular app to
view detailed information and her downloading some app.
By analyzing each log entry, we know which apps the user
has downloaded and which apps the user viewed only (but
has not downloaded). We use the afore-described data for
evaluation.

We further process the log as follows. We remove users
who have conducted less than 100 actions and then remove
apps that have less than 10 visitors. The resulted data set
consists of 3,308 users and 5,661 apps. Among these users,
we randomly select 25% as target users to receive recom-
mendation. For each target user, we mask their most recent
25% log entries by default. Recommendation is evaluated
by observing how many masked logs are recovered in the
recommendation list.

5.2 Evaluation Metrics
In the experiment, we use“relative”precision and recall to

measure the recommendation performance of the recommen-

6http://itunes.apple.com/app/id479406467
7http://itunes.apple.com/app/id368360223
8http://itunes.apple.com/app/id440230030
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(a) Screenshot of app list. (b) Screenshot of app’s detailed
information page.

Figure 6: Screenshots of Limited-free app

dation technique under examination improves over a random
recommender. Given a recommendation list l sorted in de-
scending order of the ranking score, we refer to those that
are previously masked from the log as “hit”. Let hit(k) de-
note the number of hit in a top-k list, and H is the total
number of masked items. The absolute precision and recall
are defined in Equation (13) as follows.

precision@k =
hit(k)

k
recall@k =

hit(k)

H
(13)

Let S denote the total number of candidate items, the
precision and recall in a top-k list of a random recommender
system is H

S
and k

S
[41]. Therefore, the relative precision and

recall is defined in Equation (14).

r-precision@k =
precision@k

H/S
=

hit(k) · S
kH

r-recall@k =
recall@k

k/S
=

hit(k) · S
kH

(14)

As shown, the relative precision and recall are the same
and thus we only show one of them in the experiment result.
Furthermore, the groundtruth data contains two types of
items (apps), i) those viewed and downloaded by the user,
and ii) those viewed only by the user. Naturally an ideal
recommendation would rank items in first group as high as
possible and rank those in second group as low as possible.
Accordingly we evaluate these two types of items separately.
In the experiment we first sort the recommended apps in a
descent order based on the ranking score and count how
many of top-k ranked apps are really downloaded by the
target user in the masked ground truth data. This perfor-
mance is denoted as Ppos. Then we resort the list in an
ascending order and count how many of top-k ranked apps
are only viewed but not downloaded by the target user, de-
noted as Pneg . For both metrics, higher value indicates a
better recommendation performance.

5.3 Baseline
In the evaluation, we mainly consider two conventional

recommendation techniques, i.e., collaborative filtering (CF)
and content-based recommendation (CBR). Specifically we
use probabilistic matrix factorization (PMF) [22] to real-
ize CF and support vector machine (SVM), implemented
by LIBSVM [5] to realize CBR. PMF has been widely used

in previous works [23, 1, 17, 2] as an implementation of
collaborative filtering. It is highly flexible and easy to ex-
tend. SVM displays good performance in classification and
its probabilistic extension [20, 40] can be used for ranking.

As mentioned above, apps viewed by the user are either
downloaded or not. In the user-item matrix, we assign 1 to
the element if the corresponding app is downloaded by the
user and set the value as -1 if the app is only viewed but not
downloaded by the user. For SVM, we use the description
of the app as the feature vector. Also, apps are labeled as
positive example if they are downloaded and those that are
only viewed are labeled as negative example.

Besides pure PMF and SVM, we also displays performance
of hybrid methods that linearly combine any of two solu-
tions, including PMF & SVM, PMF & AT and SVM & AT.

5.4 General Performance
We firstly evaluate the general performance of all recom-

mendation techniques. For hybrid ones, we try different
weighting parameters and display the result of the optimal
one. The results are shown in Figure 7.

10 20 30 40 50
0

2

4

6

8

10

12

14

k

 P
po

s

SVM
MF
SVM−MF
AT
SVM−AT
MF−AT

(a) Ppos

10 20 30 40 50
0

1

2

3

4

5

6

k

 P
ne

g

SVM
MF
SVM−MF
AT
SVM−AT
MF−AT

(b) Pneg

Figure 7: General performance of examined techniques.

It can be easily seen that the AT model as well as so-
lutions that have incorporated the AT model outperform
others. Note that the AT model takes into consideration
the effect of contest between apps when making recommen-
dation. Its better performance confirms our argument that
in mobile app recommendation, the app contest is an im-
portant factor to be considered. Also, those hybrid methods
that incorporates the AT model, i.e., SVM-AT and MF-AT,
achieve better performance than the pure AT model. This
is because AT, emphasizing on unique relationships between
apps, are complementary to other techniques that capture
users’ interests. Therefore optimal performance is obtained
when these techniques are integrated together. Finally, SVM
performs worse than MF in terms of Ppos, but outperforms
MF in terms of Pneg .

The former observation indicates that the impact of app
contest is more significant to content-based recommendation
than to collaborative filtering. This can be explained as
follows. Recall that in Figure 2c we show how content-based
recommendation may fail in app recommendation. Its idea
of recommending items similar to those appeared in a user’s
historical log is susceptible to the app contest. The latter
one is caused by imbalanced classification problem [6, 34].
In the records, the proportion of download log is relatively
small compared to view log, because users would usually
view multiple apps before downloading one. This situation
leads to an imbalanced training data set for SVM which is
biased towards a strong class (i.e., apps that are viewed only
by the user) when conducting classification.
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5.5 Experiment on Mask Ratio
In this set of experiment we evaluate the performance of

our AT model with regarding to different size of test data,
i.e., mask ratio. After randomly selecting a group of tar-
get users, we mask a proportion of their most recent app
view/download log and check how many of them are recov-
ered by the AT model. The number of masked log is mask
ratio. The default value is 25%. In this experiment adjust
this ratio to different values, i.e., 10%, 50%, 75% and 90%,
where large value indicates small training data. Results are
shown in Figure 8.
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Figure 8: Experiment on mask ratio

From the figures we can see that when the mask ratio
increases from 25% to 90%, the performance degrades. This
is reasonable as the training data is decreasing, resulting in
an inaccurate learned model. Therefore the recommendation
precision suffers. On the other hand, when ratio increases
from 10% to 25%, the performance is improving due to the
increase of test data. When the mask ratio is 10%, the
proportion of masked apps in the recommendation pool is
very tiny which makes the recommendation quite difficult
to hit the masked ones. Therefore the performance is poor.
When the test data is properly increased, the performance
improvement is be expected.

5.6 Experiment on Balancing Parameters
In this experiment we demonstrate how much improve-

ment the AT model brings to collaborative filtering and
content-based recommendation with different balancing pa-
rameters. Recall in Equation (2) the ranking score is the
linear combination of two. In the experiment, we combine
the AT model respectively with MF and SVM, where the
balancing parameters are denoted as αmf and αsvm.

The balancing parameter αmf controls the weight of col-
laborative filtering in the final ranking score. When αmf is
set to 0, the recommendation is reduced to pure AT while
αmf = 1 transforms the model to the pure CF. Figure 9
shows the impact of αmf to the recommendation perfor-
mance, where optimal one is achieved when αmf = 0.2.
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Figure 9: Experiment on αmf

Next we test the hybrid of content-based recommendation
and AT model with regarding to different values for αsvm.
Note that when αsvm = 0, the hybrid one is reduced to
AT model. And when αsvm = 1, the solution is equal to
content-based recommendation. As shown in Figure 10, the
performance is improved when two methods are combined
and the optimal performance is achieved when αsvm = 0.1.
Also, recall that when CF is combined with AT, the op-
timal balance weight is 0.2. The smaller weight for CBR
indicates that the contest effect has a larger impact on its
performance.
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Figure 10: Experiment on αsvm

5.7 Experiment on No. of Iterations
In the final set of experiments, we evaluate the perfor-

mance of the AT model with regarding to different number
of iterations. In gradient descent, we set the learning speed
as 0.001. The results are shown in Figure 11.

0 100 200 300 400 500
2

3

4

5

6

7

8

9

No. of Iteration

 P
po

s

k=10
k=20
k=30
k=40
k=50
k=100

(a) Ppos

0 100 200 300 400 500
1

1.5

2

2.5

3

3.5

4

No. of Iteration

 P
ne

g

k=10
k=20
k=30
k=40
k=50
k=100

(b) Pneg

Figure 11: Experiment on different No. of iterations

As can be seen in Figure 11a and Figure 11b, the perfor-
mance of the AT model is optimal near the 60th iteration
in terms of both Ppos and Pneg . When the iteration num-
ber exceeds 60, the performance is degrades, indicating the
model is over-fit.

6. RELATED WORK
Due to the popularity of smart phones and growing num-

ber of mobile app made available, a number of research
works on the mobile app recommendation have appeared
in the literature [35, 36, 9, 11]. However, most of them
focus on how to collect extra information via the phones
in order to help improve recommendation. In [35] several
app usage patterns have been identified. In [36, 9], app’s us-
age data is collected to quantify user’s rating on downloaded
apps. In [11], GPS sensor information is exploited to provide
context-aware app recommendation. Those works are com-
plementary to ours in terms of app recommendation. In this
work, we mainly focus on a unique phenomenon in mobile
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app adoption, i.e., app contest, which makes mobile app rec-
ommendation different from conventional item recommen-
dation where current recommendation techniques, e.g., CF
and CBR, are directly applicable.

Conventional recommendation techniques are generally clas-
sified into three categories, collaborative filtering, content-
based recommendation and hybrid of the two. In the fol-
lowing we give a brief review of the first two as well as their
implementation techniques. Finally we review recent works
that consider item relationship in recommendation.

6.1 Collaborative Filtering and Probabilistic
Matrix Factorization

Collaborative filtering (CF) is a well known recommen-
dation approach that has been widely studied and adopted.
The core idea is that users of similar interests may display
similar ratings on similar items. Specifically, if a recom-
mendation is made based on similar users (those who have
accessed the same items as the target user has), it is re-
ferred to as user-based CF [13]. On the other hand, if a
recommendation is made based on similar items (those that
have been accessed by the same set of people), it is referred
to as item-based CF [25].

As mentioned in [10], CF algorithms can be roughly clas-
sified into neighborhood models and latent factor models.
Matrix factorization (MF) is one of the most successful re-
alizations of latent factor models and is superior to classic
nearest-neighbor techniques [14]. The general idea of MF is
that users and items are associated with several latent fac-
tors and the observed user-item rating matrix is the multi-
plication of the two. These latent factors are learned by min-
imizing a loss function, which is defined as the sum-squared
distance between observed and simulated entries [28]. Then
Rennie et. al. [29, 21] modified such a loss function by con-
straining the norms of user and item feature vectors.

In [22], Salakhutdinov and Mnih proposed probability dis-
tribution on the latent feature vectors and developed proba-
bilistic matrix factorization (PMF). In their work, they de-
rived the loss function in terms of probability theory and
correlated those heuristically-defined loss function with stan-
dard Gaussian distribution. Based on the idea of PMF,
many variants and extensions have been proposed so far,
e.g., [23, 1, 17, 2]. Readers can resort to [26, 27] for a gen-
eral picture.

In this work we adopt the basic PMF proposed in [22]
as the implementation of CF. Our goal is to demonstrate
the importance of app contest in app recommendation and
performance would be improved when combined with our
AT model.

6.2 Content-based Recommendation and Sup-
port Vector Machine

The content-based recommendation (CBR) is an outgrowth
and continuation of information filtering research [3]. It rec-
ommends items similar to the target user’s profile. A typ-
ical CBR consists of three steps, i.e., content analyzer (or
item representation), user profile learning and content filter-
ing [16]. The first one is about how to model items’ feature.
The second and third one are usually bound together.

For textual items, the feature modeling has been widely
studied for information retrieval where items are usually rep-
resented as bag-of-word with TF/IDF [24] or latent topic dis-
tribution [30]. The latter one is proved to be more precise

and thus in this work we use the popular Latent Dirichlet
Analysis (LDA) [4] to model the apps’ features.

Major methods of user-profile learning, as mentioned in [19,
16], are k-nearest neighbor, Naive Bayes classifier and linear/non-
linear classifier. The first one is inefficient at classification
time [16]. The second one suffers unsatisfactory perfor-
mance for diversified length of items’ textual content and
unbalanced training sample [16]. Therefore in this work we
choose Support Vector Machine (SVM) [32] as it is shown to
be a good classifier in text categorization [31] and has been
adopted by previous works (e.g., [40, 8]) as basis of CBR.
Furthermore, the probabilistic extension [20, 40] makes it
capable of ranking tasks as in our work.

6.3 Item Relationship in Recommendation
Few works considered the impact of item relationship in

recommendation except for two recent works [37, 33], where
the relationship is modeled by introducing the concept of
“utility”.

In [37], Yang et. al. proposed Collaborative Competitive
Filtering (CCF) to model the user choice process. They
argued that when the user is given a few items, they are
competing to win the user’s favor. Our work is different.
Firstly, in [37] they model the item competition among can-
didate items, but in this work we aim to model the contest
between old items (apps) and new one. Also, the scenario
is different. In [37], user first searched for similar items and
selected only one of them. In our case, the recommended
apps are not necessarily similar. Even if they are, the user
can select (download) all of them since the cost is not high9.

In [33], Wang et. al. modeled the user purchase behav-
ior in E-commerce by maximizing the marginal net utility.
Specifically they proposed a utility function where each item
has decreasing benefit as the purchasing quantity increases,
based on the Law of Diminishing Marginal Utility. The app
recommendation in our work differs from conventional shop-
ping behavior in two ways. Firstly, there is no concept of
“quantity” in app downloading. The user does not need to
repetitively download one app as she might do when pur-
chasing some conventional items, e.g., food, tickets. For app,
there is only binary value, i.e., download or not. Secondly,
in [33], the increase of some item can always bring some
utility, although the value is decreasing as the quantity in-
creases, which is not true in our case. For example, if the
user already has a weather forecast app and suppose it works
perfectly well, downloading any similar app brings nothing
but occupance of smart phone’s storage space. Thus, the as-
sumption in [33] is not applicable to app recommendation.

7. CONCLUSION AND FUTURE WORK
In this work we proposed the AT model to exploit the app

contest phenomenon for app recommendation. Generally we
assume each app has two latent values, i.e., actual value and
tempting value. The former stands for the real value the app
brings to the user while the latter represents the satisfac-
tory value it looks to have. The app recommendation needs
to consider both user’s interest and the app contest. App
download involves a comparison between the actual satisfac-
tory values of owned apps and the tempting value of a new
app. By conducting extensive experiments, we demonstrate
that our AT model outperforms conventional recommenda-
tion techniques (i.e., CF and CBR) that only captures user’s
9All apps we studied in this work are free when the user
views them
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interests. Moreover, optimal recommendation is achieved
when both parts are integrated.

In the proposed model, the actual and tempting values are
treated as latent attributes of apps and learned via users’
action sequence. While this technique is quite popular in
latent factor model, it is rather interesting to understand
what really determines the actual and tempting values for
an app. In future works we plan to conduct a comprehensive
study on this point.
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